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ABSTRACT

Closed-form direct and inverse kinematics of a new three degree-of-freedom (DOF) parallel
manipulator with inextensible limbs and base-mounted actuators are presented. The ma-
nipulator has higher resolution and precision than the existing three DOF mechanisms with
extensible limbs. Since all of the manipulator actuators are base-mounted; higher payload
capacity, smaller actuator sizes, and lower power dissipation can be obtained. The manip-
ulator is suitable for alignment applications where only tip, tilt, and piston motions are
significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree
polynomial in the square of tangent of half-angle between one of the limbs and the base plane.
Hence, there are at most 16 assembly configurations for the manipulator. In addition, it is
shown that the 16 solutions are eight pairs of reflected configurations with respect to the
base plane. Numerical examples for the direct and inverse kinematics of the manipulator are
also presented.

INTRODUCTION

In the past few years, several researchers have shown a great deal of interest in studying
kinematic synthesis and analysis of parallel manipulators. Such mechanisms are most suit-
able for applications in which the requirements for precision, rigidity, load-to-weight ratio,
and load distribution are more important than the need for a large workspace.

The Stewart-Gough platform [1] is probably the first six degree-of-freedom (DOF) parallel
mechanism which has been studied in the literature. Waldron and Hunt [2] showed that
kinematic behavior of parallel mechanisms has many inverse characteristics to that of serial
mechanisms. For example, direct kinematics of a parallel manipulator is much more difficult
than its inverse kinematics; whereas, for a serial manipulator, the opposite is true.

Several researchers have analyzed the direct kinematics of the Stewart-Gough platform.
Griffis and Duffy [3] as well as Nanua et al. [4] studied direct kinematics of special cases of
the Stewart-Gough platform, in which pairs of spherical joints are concentric on either the
platform or both the base and the platform. They were able to reduce the problem to an
eighth-degree polynomial in the square of a single variable (total degree of 16). However, as
mentioned by Griffis and Duffy [3], pairs of concentric spherical joints may very well present
design problems. Lin et al. [5] solved direct kinematics of another class of the Stewart-
Gough platforms, in which there are two concentric spherical joints on the base and two
more concentric spherical joints on the platform. The latter class of the Stewart-Gough
platforms suffer from lack of symmetry and concentric spherical joints are still needed in
their construction. Parenti-Castelli and Innocenti have also been able to obtain closed-
form solutions for other special forms of the Stewart-Gough platform [6]. Raghavan used a
numerical technique known as polynomial continuation to show that there are forty solutions
for the direct kinematics of the Stewart-Gough platform of general geometry [7]. Other
types of six-DOF parallel manipulators have been introduced and studied in the literature
by Tahmasebi and Tsai [8,9], Merlet [10], Ben-Horin and Shoham [11], and Hudgens and
Tesar [12].

Some researchers have also shown interest in three DOF parallel mechanism. For example,
Gosselin and Angeles have studied optimal kinematic design of planar and spherical parallel
manipulators [13,14]. Tsai analyzed the kinematics of a three DOF platform manipulator
with three extensible limbs [15]. Song and Zhang studied a three DOF mechanism with three
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RPS legs [16]. Ceccarelli introduced a new three DOF spatial parallel mechanism [17].

In this paper, closed-form direct kinematic solution for a new three DOF parallel manip-
ulator is presented. It will be shown that direct kinematics of the minimanipulator involves
solving an eighth-degree polynomial in the square of a single variable. The simpler inverse
kinematics of the three DOF manipulators will also be presented.

The manipulator, which is being analyzed in this article is suitable for optical (and other
types of) alignment applications where only tip, tilt, and piston motions are significant (e.g.,
alignment of segmented spherical mirrors, alignment of Fabry-Perot interferometers).

DESCRIPTION OF THE MANIPULATOR

The mechanism described here is a three DOF parallel alignment manipulator with three
inextensible limbs and base-mounted actuators. Figure 1 shows the details of the manipula-
tor. The picture of a manipulator prototype is shown in Figure 2.

The three inextensible limbs R; Py, Ry P>, and R3P3 are connected to the output moving
platform through spherical joints Py, P, and P3;. The lower ends of the limbs are connected
to links R T}, RsTs, and R3T3 through revolute joints at Ry, Rs, and R3. Slider Links R;T},
RyTs, and R3Ty are connected to the fixed base through base-mounted prismatic actuators
N1y, NoTs, and N3Ts, respectively.

The manipulator has three degrees of freedom. Tip, tilt, and piston motions of the moving
platform (output link) can be obtained by using the prismatic actuators to vary the O1 Ry,
O5Rs, and O3R3 lengths. Note that the prismatic actuators can be inside or outside of the
Ry Ry R3 triangle formed by the lower ends of the limbs.

Examples of prismatic actuators that can be used in the manipulator include: (1) lead
screws; (2) linear hydraulic motors; (3) inch worm linear stepper motors; (4) piezoelectric
linear drives; (5) linear flexure (compliant) drives.

Let subscript i in this section and the rest of this work represent numbers 1, 2, and 3 in a
cyclic manner. The angle between the lines ON; and ON,y; is equal to 120 degrees.

Compared to the existing three DOF platforms with extensible limbs and limb-mounted
actuators, the manipulator being introduced here has the following advantages:

e Its power and sensor lines need not be routed through its joints at the lower ends of its
limbs.

e It has higher resolution and precision.

* The prismatic actuators move the lower ends of the limbs on the fixed base. Large move-
ments at the lower ends of the limbs are needed to generate smaller movements at the top
ends of the limbs, which are connected to the moving platform. This “motion reduction”
feature results in higher mechanical advantage.

e Weight of any of its base-mounted actuators is not a load for its other two actuators.

Note that the manipulator limb configurations shown in Figures 1, 2, and 3 are different
from those used in the siz DOF minimanipulator introduced by Tahmasebi and Tsai [8,9].
Compliant (flexured) joints and linear actuators can be used in construction of the manipu-
lator to obtain very small movements.

Since there are no joints on the limbs, the manipulator can also be used as an inflatable
space device.



Prismatic actuators vary the
OR,, OR,, and OR, lengths.
Revolute joints at R;, R,, and R,.
Spherical joints at P, P,, and P,.

Length of OR; = |,
i=1,2,3

Figure 2: The new manipulator prototype.

If rotary actuation is desired, slider-crank mechanisms can be used as drivers for the ma-
nipulators (see Figure 4). Links C/A; and A}B; transform the rotary actuation at C} to linear
motion of the slider link T; R;. Link variables a and b in Figure 4 can be chosen properly to
add additional mechanical advantage (motion reduction) to the manipulator.

INVERSE KINEMATICS

Solving the inverse kinematics of the manipulator involves finding I; (length of the vector
OR;), given three position and/or orientation variables of the moving platform.

As mentioned earlier, the manipulator is suitable for optical (and other types of) alignment
applications where only tip (rotation about the X axis), tilt (rotation about the Y axis), and
piston (translation along the Z axis) motions are significant. In this paper, we choose the
tip, tilt, and piston variables as the three known inputs for the inverse kinematics of the
manipulator. As shown below, given the tip, tilt, and piston degrees of freedoms of the
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Figure 4: A slider-crank driver for the manipulator.



moving platform, its complete location can be determined.

Let us define the fixed base reference frame (XYZ) and the moving platform reference
frame (UVW) in detail. The origin of the platform reference frame (point G) is placed at
the centroid of triangle P, P, Ps (see Figure 1). The positive U-axis is parallel to and points
in the direction of vector P,P;. The positive V-axis points from point G to point P;. The
W-axis is defined by the right-hand-rule. To keep the minimanipulator symmetric, triangle
P, P, P is made equilateral. Let the “home” or reference configuration of the manipulator
be the one in which the limbs are perpendicular to the fixed base plane. The origin of the
base reference frame (point O) is placed at the projection of point G onto the base plane
at the reference configuration. The positive X-axis is parallel to and points in the direction
of vector RyR3 at the reference configuration. The positive Y-axis points from point O to
point R;. The Z-axis is defined by the right-hand-rule.

Revolute Joint Constraints
The revolute joints at Ry, Ry, and R3 impose the following constraints on the coordinates
of points P;, P, and P5 in the fixed reference frame.

Xp1=0 , Xpa=V3Ypy , Xps=—V3Vps, (1)

where Xp; and Yp; are the X and Y coordinates of point F;, respectively. Let ug, u,, u, be
the XYZ components of a unit vector along the U axis. Similarly, let v,, v,, v, represent the
XYZ components of a unit vector along the V axis. Finally, let w,, w,, w, denote the XYZ
components of a unit vector along the W axis. Then

X P Xa Uy Vp Wy U P
Ypﬂ‘ = YG + Uy Uy wy Vpﬂ‘ y (2)
ZP,i ZG Uy Vy Wy WP,i

where Up;, Vp;, and Wp; are the U, V, and W coordinates of point F;. Similarly, Xq, Yg,
and Zg are the X, Y, and Z coordinates of point G. Let p denote the length of vector GP;.
Then

Up1 0 Upa —V/3p/2 Ups V3p/2
Ver | = | P ) Vpo | = —0.5p ) Ves | = | —0.5p |. (3)
Wpa 0 Wpo 0 Wps 0

Combining equations (2) and (3), we obtain
XP,l - XG + pug XP,Q = XG - \/gpuar/Q - O5pv$ ) XP,3 = XG’ + \/gpuar/z - 05pvx (4)
Ye1 = Yo+ pv, , Yo = Yo — V3pu,/2 — 0.5pv, , Yps = Yo+ V3pu,/2 — 0.5pv,  (5)

Zpr=2Zg+pv,, Zpas = Zg — \/gpuz/Q —0.5pv, , Zps = Zg + \/gpuz/Z —0.5pv,. (6)

Substituting for Xp;, Xpo, Xp3, Yp2, and Yp3 from equations (4) and (5) into equation (1)
yields the following equations

XG = — PV, (7)
Xe — V3pu, /2 — 0.5pv, = V3(Ye — V3pu, /2 — 0.5pv,), and (8)
Xe + V3pu,/2 — 0.5pv, = —V/3(Yg + V3pu, /2 — 0.5pv,). (9)
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Subtracting equation (9) from equation (8) and simplifying, we get
Yo = 0.5p(vy, — uy). (10)
Adding equations (8) and (9) results in
2X¢ — pvy, = —3pu,,. (11)
Subtracting equation (11) from two times equation (7) and simplifying, we get
Vg = Uy. (12)

Equations (7), (10), and (12) represent the constraints imposed by the revolute joints at Ry,
R>, and Rj3 on the platform motion.

Analytical Solution

Let 1, 0, and ¢ represent the rotations of the moving platform about the X, Y, and Z axes,
respectively. The rotation matrix of the platform with respect to the fixed base (R) can be
expressed as [18]

Up Uy Wy CHCO CHSOSYH — SeCh  CHSHCH + ShSib
R=|u, v, w | =| S¢CO S$S05¢ + CopCrp S$pSOCY — ChpS | (13)
w, v, w, — S0 COSY COCY

where C' and S denote the cosine and sine trigonometric functions, respectively. Using the
constraint expressed in equation (12) and equation (13), we can write

CpSOSyY — SpCp = SeC4h. (14)
Equation (14) can be rearranged to obtain
tang = So/Cp = S0SY/(CO+ C). (15)

Given v (tip) and € (tilt), equation (15) can be solved for ¢ (twist). Two solutions are
possible. Only one of the solutions is feasible. The other solution, which is 180 degrees
greater than the feasible solution is not practical.

Now that we have all 3 platform rotation angles (i.e., ¢, 6, and ¢); we can obtain wu,, u,,
and v, from equation (13); and solve for X and Y using equations (7) and (10).

Having found the location (position and orientation) of the platform from its tip, tilt,
and piston degrees of freedom; we can now turn our attention to determining /;. The XYZ
coordinates of point R; is expressed in the following equation:

XRr1 0 XR2 —/3l3/2 XRry3 V3l3/2
YR,l = ll 5 YR72 = —0.5l2 s YR73 = —O.5l3 . (16)
Zpa 0 ZR2 0 ZR3 0

Let the length of each inextensible limb be equal to r. Then
(Xpi — Xpi)*+ (Ypi — Yri)* + (Zp; — Zps)* =1 (17)
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Substituting from equations (4), (5), (6), and (16) into equation (17) yields

(X +pva)® + (Yo +pvy — L) + (Zg + pv.)* =1’ (18)

(X — V3pug/2 — 0.5pv, + V3la/2)* + (Yo — V3pu, /2 — 0.5pv, + 0.515) +
(Za — V3pu./2 — 0.5pv,)? = 1 (19)

(Xe + V3pu,/2 — 0.5pv, — V3l3/2)? + (Yo + V3pu, /2 — 0.5pv, + 0.513) +
(Za +V3pu./2 — 0.5pv,)? = 1. (20)

Equations (18), (19), and (20) represent three quadratic equations in Iy, [, and l3, respec-
tively. Two solutions exist for each of the three unknowns. Geometrically, these two solutions
represent intersections of a sphere, which is centered at P; and has the radius of r, with the
line OR;.

Numerical Example
In this example, the above procedure is demonstrated. Let the length of each side of
triangle P; P, P3; be equal to g. The manipulator dimensions in this sample problem are

q=15 , r=1.

Using the relationship p = ¢/+/3, we find p to be equal to 0.866. Note that only the ratios are
important; therefore, r is set equal to 1.The tip, tilt, and piston variables for this example
are

=5, 0=5", Zg=0.T.
Rotation of the platform about the Z axis (¢), X¢, and Y are found to be

=022 | Xg=-0.0033 , Yg=0.0000.
The calculated results for [; are
lh=149 or 023 , Iy =155 or 0.18 , I3=1.66 or 0.05.

The results of the above numerical example have been verified by performing a direct kine-
matics analysis.

DIRECT KINEMATICS

Solving the direct kinematics of the manipulator involves finding the location (position
and orientation) of the moving platform, given the Iy, l5, and I3 lengths.

Angles between the Limbs and the Base

As shown in Figure 5, let 7; be the angle from vector OR; to vector R; P;. Also, let «; be
the angle from the positive X-axis to vector OR;. Angle «; can be found (in radians) from

a; = m/2+ (i —1)27/3. (21)

The X and Y coordinates of point R; in the fixed reference frame XYZ can be found from
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Figure 5: Depiction of angles a; and 7;.

the following relationships
XR,i = ZZCOQ y YR,i = lZSOéZ (22)

The coordinates of point P; in the fixed reference frame XYZ are

Xp7i = TCO[Z‘CT]Z' + XRJ', (23)
Yp; = rSaCn;+ Yry, (24)
Zpﬂ; = TST]Z (25)

Referring to Figure 1, we can write
(Xpi — Xpit1)” + (Ypi — Ypir1)® + (Zpi — Zpis1)” = ¢ (26)

Substituting from equations (21), (22) into equations (23 and (24); and substituting the
resulting expressions for Xp; and Xp; as well as equation (25) into equation (26) and sim-
plifying, we obtain

A;S1:SNi1 + BiCniCnigy + DiCn; + EiCnipq + F; =0, (27)

where Az = —27’2, Bz = 7“2, Dz = 2Tli*|>7“li+1, Ez = Tli*|>2’l"li+1, and E = 2T2+l2‘2+l2‘2+1+lili+1 —
q*. Let t; = tan(n;/2). Then Cn; = (1 —t2)/(1 + t?), and Sn; = 2t;/(1 + ¢2). Substituting
these expressions into equation (27) and simplifying, we obtain

where Gy = B, — D; — E;+ Fi,H; = —B; — Di+ E; + I}, I; = —Bi + D; — E; + Iy, J; = 44,
and K; = B; + D; + E; + F;. Equation (28) can be rewritten, for ¢ = 1,2, 3, in the following
forms

(Git; + 1)t5 + (Jity)te + (Hit] + Ky)
(Gat] + Ha)t3 + (Jats)ts + (It + Ko)

(29)
(30)

0,
0,
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(Gst] + H3)ts + (Jsty)ts + (I3t + K3) = 0. (31)

Equations (29), (30), and (31) represent 3 equations in the three unknowns ¢y, ¢, and ¢3. In
what follows, we will reduce these equations to an eighth-degree polynomial in the square of
t.

oStep 1 - Elimination of to

We can think of equations (29) and (30) as two equations in the variable t5. Let

Ly=Giti+1, , My=Jt , N =Ht+K,
and
Ly=Goti+ Hy , My=Joty , No= L]+ K,
then equations (29) and (30) can be written as
Lit2 + Mty + N, = 0, (32)
and
Lot2 + Myty + Ny = 0. (33)
Multiplying equation (32) by Ly and equation (33) by L;, and subtracting, we obtain

(M1L2 - M2L1)t2 + (N1L2 - NQLl) - O (34)

Multiplying equation (32) by N and equation (33) by Nj, subtracting, and dividing by 5,
we obtain
(L1 Na — LyN))ts + (MyNy — MyN;) = 0. (35)

Equations (34) and (35) represent two linear equations in one unknown. Vanishing of their
eliminant yields [19]
MLy — MyLy  NiLp — NoLy | _ 0 (36)
LyNy — LoNy  MyNy — MyNy '

Expanding equation (36) and substituting the expressions for Li, My, Ny, Ly, My, and Nj
results in the following equation.
Ot + Oots + Osts + Oyts + O5 = 0, (37)

where

O, = Ut} + Ust; + Us,
Oy = Uyt + Usty,

O3 = Ugst] + Uqst: + Us,
Oy = Uyt + Ut

Os = Upnt) + Ui + Uys.

Symbolic algebra program Macsyma [20] was used to find the following expressions for U;
through Uys.

U1 == G%[zz - 2G1G2H1[2 + G;HIQ
Uy = —2GGolbK, +2G2H Ky + GolyJ? + 2G 1112 — 2GoH 11 1,
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Us = GiK; 2G| LK, + 1713

U = —GilhJiJys— GoHJyJy

Us = —Goli oK) — L1, J,

Us = 2GLKy —2GGoH Ky + G H  J3 — 2G H Hy Iy + 2Go HE H,y

Uy = —2G1GoK Ky + GoJi Ky + 4G I LKy — 2GoH [ Ky + G I3 K —
2G1 Hol, Ky + 4Gy H Hy Ky + H 11 JZ + Holo J? — 2H Ho @ 1

Usg = —2G2[ KKy +2I1 LKy + 2GyHy K + LIJ3K, — 2Ho [ LK,

Uy = —Gi1JoKy— HiHyJyJs

Uw = —LhJoKy— HyJ1 oK,y

Uy = GIK; —2GH HyK, + HYHj
Uy = 2G| K2 —2G H K\ Ky + HyJ?Ky — 2H, Ho I Ky + 2H HZ K,
Us = LK —2H, K\ K, + HK?

oStep 2 - Elimination of ts
Equation (31) can be rewritten as

Vit + Vaty + Vs = 0, (38)

where Vi = G3t? + Hs, Vo = Jsty, and V3 = H3t? + K3. We can think of equations (37) and
(38) as two equations in the variable ¢3. Multiplying equation (37) by V; and equation (38)
by O;t3, and subtracting, we obtain

(02Vi — O1Wo)t5 + (03Vy — O1V3)t5 + O4Vits + OsV; = 0. (39)

Multiplying equation (37) by Vit3 + V5 and equation (38) by O;t3 + O,t3, and subtracting,
we obtain

(O3Vi — O1Va)t3 + (O4Vi + O3Vy — O3Va)ts + (OsVi + O4Va)ts + OsVo = 0. (40)
Multiplying equation (38) by t3, we obtain
Vits + Vats + Vats = 0. (41)

We can think of equations (39), (40), (41), and (38) as four linear equations in three unknowns
t3,t3, and t3. Vanishing of their eliminant yields [19]

O,V1 — OV} O3V) — O V3 O4V; OsV;

O3V — O1Vs O4Vi + O03Va — O3Vs OsVi + O4Va OsVs —0 (42)
Vi Vo V3 0 '
0 Vi Vo V3

Expansion of equation (42) results in

—O5V1[(05V1 = O1Vs)(V' = ViVs) — ViVa(=O5Vs + O5Va + O4V4) +

‘/12(04‘/2 + OsV)] + (0V; — 01‘/2)[05‘/2(‘/22 —WVs) +

V?,Q(—OQV}, + O3Va 4+ O4V)) — Vo(O4Va + O5V1) V3] +

OV [—ViV5(—=O05Vs + O3Va 4+ O4V1) + VoV (03V) — O1Vs) + O5V12V2] -

(03V1 — O1V3)[V(O3Vy — O1V3) — Vi(O4Va + OsV1)Vs + O34 V5] = 0. (43)
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Equation (43) is an eighth-degree polynomial in the square of ¢; (see the Appendix). An
example of such an eighth-degree polynomial is equation (44), which is shown in the following
numerical sample. It follows that there are at most eight pairs of solutions for ¢;. In each
pair, one solution is the negative of the other one. The elimination procedure described
above (Sylvester dialytic elimination) has also been used by many others including Roth
[21]; Tahmasebi and Tsai [8]; and Ben-Horin and Shoham [11].

Location of the Platform

Having found t;; 3, and ¢3 can be determined by back substituting ¢; into equations (29)
and (31). The angle 7; can easily be determined from ¢;. The XYZ coordinates of point
P; can then be found by substituting the values of 7; into equations (23), (24), and (25).
The XYZ coordinates of points P;, P», and P3 completely define the location of the moving
platform.

In summary, solving the direct kinematics problem results in at most eight pairs of manip-
ulator locations. In each pair, one location is the mirror image of the other one with respect
to the Ry Ry R3 base plane (see the numerical example below).

Numerical Example

In this example, the direct kinematics procedure described above is demonstrated. The
same parameters used in the inverse kinematics numerical example is used here. Namely,
r=1,q¢= 1.5, and p = 0.866. Let the input variables be

L=149 ., I,=018 , I3=1.66.
Then, equation (43) reduces to

115 — 130.1813¢1* 4 674.5842¢ 1 4 4127.9989¢1% — 18783.1681t} — 55477.6465t° +
134975.0739¢] + 330780.9874¢7 + 11863.8182 = 0. (44)

The 16 solutions for t; are

4i0.1908, 4i1.5479, +i1.68196, £2.1049, +2.3239, +i1.8714,
42.1464, £11.1583

where i=y/—1. The eight real solutions yield the values shown in Tables 1 and 2 for angles
M1, M2, and N3 (in degrees) and the coordinates of points Py, P», P, and G. As mentioned
earlier, triangle P, P, P; is equilateral. Therefore, the XYZ coordinates of point G in Tables 1
and 2 are calculated using the following relationships.

Xe=(Xp1+Xpa+Xp3)/3, Yo=Yp1+Ypa+Yps)/3, Za = (Zp1+ Zpa+ Zp3)/3

The results of the numerical example have been verified by performing an inverse kinematics

analysis. Note that pairs of solutions for points P, and G are symmetric with respect to the
base plane, as predicted. Also note that solution 1 corresponds to the inverse kinematics
numerical example.

SUMMARY

In this paper, closed-form solutions for the direct and inverse kinematics of a new three
DOF parallel manipulator, which uses base-mounted actuators and inextensible limbs, are
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No. 1 2 3 4

m | 129.1776 | -129.1776 | 133.4338 | -133.4338
72 46.6998 | -46.6998 | -144.4482 | 144.4482
ns | 143.3420 | -143.3420 | 137.4258 | -137.4258
Xp1| 0.0000 0.0000 0.0000 0.0000
Ypi1 | 0.8628 0.8628 0.8070 0.8070
Zpy | 0.7752 -0.7752 0.7262 -0.7262
Xpa | -0.7521 -0.7521 0.5465 0.5465
Ypo | -0.4342 -0.4342 0.3155 0.3155
Zpy | 0.7278 -0.7278 -0.5814 0.5814
Xps | 0.7422 0.7422 0.7992 0.7992
Yps | -0.4285 -0.4285 -0.4614 -0.4614
Zpsz | 0.5970 -0.5970 0.6765 -0.6765
Xe | -0.0033 -0.0033 0.4486 0.4486
Yo 0.0000 0.0000 0.2203 0.2203
e 0.7000 -0.7000 0.2738 -0.2738

Table 1: First four real solutions of the direct kinematics sample problem.

presented. The manipulator is suitable for alignment applications in which only tip, tilt, and
piston motions are significant. It is shown that there are at most 16 solutions for the direct
kinematics of the manipulator. To obtain these solutions, only an eighth-degree polynomial
in the square of a single variable has to be solved. It is also shown that the 16 solutions are
eight pairs of reflected configurations with respect to the plane passing through the lower

ends of the manipulator’s three limbs. Direct and inverse kinematics numerical examples are
also presented.

APPENDIX - Expansion of Equation (43)

If we substitute the expressions for Vi, Vs, V3, 01, Oy, O3, 0y, and Oj into equation (43),
and expand, we obtain
il 4 Sttt Eat? 4 Sl + St F Bt 2] S5t 29 =0 (45)
where

E = —Gy?H3? Ug? +2G3®* Hy Uy Ug 4+ 2Gs Hy® Uy Ug — G3* Uy ?—
2G> H3?> Uy Uy — H* U2

Zy = —G3PHy Ug? 4+ G52 H3 J3 Ug Ug + 2 G52 H32 Uy Ug + G52 J3 Uy Ug—
3G3H32J3 U1 Uy —2G3%2Hs? Ug Uz + 2G5 Hy Uy Up +2 Gy Hy3 Uy Up—
2 G52 Hy K3 Ug? — 2G5 H3® Ug? + Gy Hy? J3 Uy Ug 4+ 2G5 Hy® Uy Ug+
2G5 Hy Upp Ug + 2 G52 K3 Uyy Ug — G52 J32 Uy Ug + 6 G52 H32 Uy Ug+
6 G3 H3? K3 Uy Ug — Hy? J32 Uy Ug + 2H3* Uy Ug — Gy Hy® U2 —

12



No. ) 6 7 8

m | 130.0379 | -130.0379 | 169.7577 | -169.7577

2 45.7923 | -45.7923 | -50.5084 | 50.5084

ns | 177.7693 | -177.7693 | -138.7068 | 138.7068
Xp1| 0.0000 0.0000 0.0000 0.0000
Yp: | 0.8512 0.8512 0.5104 0.5104
Zpy | 0.7656 -0.7656 0.1778 -0.1778
Xpa | -0.7620 -0.7620 -0.7089 -0.7089
Ypo | -0.4399 -0.4399 -0.4093 -0.4093
Zpy | 0.7168 -0.7168 -0.7717 0.7717
Xps | 0.5716 0.5716 0.7863 0.7863
Yps | -0.3300 -0.3300 -0.4539 -0.4539
Zpsz | 0.0389 -0.0389 -0.6599 0.6599
Xa | -0.0635 -0.0635 0.0258 0.0258
Yo 0.0271 0.0271 -0.1176 -0.1176
e 0.5071 -0.5071 -0.4179 0.4179

Table 2: Last four real solutions of the direct kinematics sample problem.

3G32H;J3 U Uy + Hi? J3 Uy Uy — 2G52Hy2 Uyy Uy — 2H3* Uy Ug—
2 G34 Ull U12 - 2 G32 HB2 Ul U12 - 4 G33 H3 Ull2 - 4 G32 H3 K3 Ul U11+
4G3H3J5°U Uy —4G3H33 U, Uy —4H32 K3 U2

E3 = —G3% K3 Ug? — 3G3? Hy? Ug? + G52 H3 J3 Uz Ug 4+ G52 J3 K3 Ug Ug+
2GsHy? J3 Ug Ug + 2G32 Hy? Us Ug + 4 G5 Hy K3 Uy Ug — Gy Hg J32 Uy Ug+
4G3H52 Uy Ug —3G3H32J3 Uy Ug 4+ G52 J3 Upp Ug + 3G32 Hy J3 Upy Ug—
2G53Hy Uyg Uy — 6 Gy Hy J3 K3 Uy Ug + Hy J32 Uy Ug — 3H33 J3 Uy Ug—

2 G352 H3? Ug Us + 2G5 Hy Uyy Ug + 2G5 Hy® Uy Ug — G52 Hy2 Up%—
4G3*H3K3Ug Uy —4G3H3? Ug Uy + G3 Hs? J3 Uy Uy + 2G5 Hy? Uy Up
2G5 Hy U1 Ur + 2G5 K3 Upy Uy — G532 332 Upy Up 4 6 G52 H3? Uy Ur
6 Gs Hy> Ky Uy Uy — H3? J32 Uy Uy + 2H3* Uy Uy — G52 K32 Ug?—
4G3H3? Ky Ug? — Hy? Ug? 4+ G5 H32 J3 Us Ug + 2 Gy Hy J3 K3 Uy Ug+

Hs? J3 Uy Ug + 2G5 Hs® U Ug + 6 Gy Hy® Ky Uy Ug — Hy? J32 Uy Ug+

2H3" Uy Ug + 2G5 Hy Uy Ug + 2 G3° K3 Upg Ug — G3® J3% Upg U+

6 G2 Hs? Ujo Ug + 6 G52 Hy K3 Uy Ug — 2G5 Hs J5? Uyy Ug + 6 G3 H® Uy Ug+
G32H3J3U o Ug 4+ 6 G3Hs K32 Uy Ug — 2H3 J3? K3 Uy Ug + 6 Hy® K3 Uy Ug—
2G3Hs* Uy Us —3G3%Hsy J3Uyy Uy + Hs® J5 Uy Uy — 3G3 Hy? Ky Uy2—

Hy' U2+ Hy? J3 Uy Uy — 3G3? Hy J3 U1 Uy — 3G4? Js K3 Upy Ug+

G3J3° U Uy — 6 Gy H3® J3 Uy Uy +2 G5 H3® Uyg Uy + 3H3* J3 K3 Uy Ug—
2G3>H3? Uy Ug — 2H3* Uy Uy — Hy? Uy? — 2G4? Hy? Uy Up—

13



4G3*H3 K3 Uy Uy +4 G Hy J32 Uy Uy — 4G Hz? Uy Uy — 8Hy K3 Uy Ug—

2G3* Uy Ugs — 2G3° H3? Uy Uy — G3* Upp® — 8 G3® Hy Uy Upo—

4G3*H3 K3 Uy Upg +4 G3Hy J32 Uy Upg — 4 G3 Hy? Uy Uyp — 6 G3> Hz® Uy >+

G3®J3 U1 Un —2G3°K3° Uy Upy +4G3 J3° K3 Uy Uy — 8 Ga Hy? K3 Uy Uy —
J3* Uy Upy + 4H;% J5° Uy Uyy — 2H3* Uy Uyy — 3G Hy? J3 Uy Ugg—

6 Hs” K3 U, °

= —3G3° Hy K3 Ug? — 3 G3 Hs® Ug? 4+ G3? Hy J3 Ug Ug + G3? J3 K3 Uy Ug+

2G5 H32J3 Uy Ug +2 Gy Hy J3 Ky Ug Ug + Hs® J3 Ug Ug + 4 G5? Hy K3 U Ug—
G3H3J32Us Ug+4G3Hs? Us Ug +2G3% K32 Uy Ug — G3 J32 K5 Uy Ug+
8GsHy? Ky Uy Ug — H3?J52 Uy Ug + 2H3* Uy Ug — 3G3 Hs? J3 U Ug—

6 G3Hs J3 K3 Uy Ug 4+ Hy J3® Uy Ug — 3Hy? J3 Uy Ug + G4 J5 Uyg Ug+
3G32HyJ3U1a Ug 4+ 3G3H3? J3 Uy Ug — 2G5 Ky Uy Ug — 6 G2 Hy? Uy Ug—
3G3J3Ks? Uy Ug + J5* K3 Uy Ug — 6 H3?2 J3 K3 Uy Ug — 2Gs? Hy? Uy Ug—

4 G3*Hy K3 Ug Ug — 4Gy Hs® Ug Ug + G3 Hy? J3 Uy Ug + 2 Gg Hs® Uy Ug+

2 G52 Hy Upp Ug + 2G5 K3 Uy Ug — G52 J32 Upy Ug 4 6 G52 Hy? Upy Us+

6 Gs H3? K3 Uy Ug — Hy? J32 Uy Ug 4+ 2H3? Uy Ug — 2 G4? Hy K3 U2 —

2G3H3? U2 —2G3% K32 Ug Uy — 8 Gy Hy? K3 Ug Uy — 2H3 Ug Ur+
G3H32J3Us Up +2G3Hy Js K3 Uy Uy + Hy® J3 Uy Uy + 2 Gy Hy Uy Up+-

6 G3 Hy?> K3 Uy Uy — H32 J32 Uy Uy + 2H3 Uy Uy + 2G4® Hy Uy Ur+

2G5 Ky Upa Uy — G52 J32 Upo Uy + 6 G H32 Upp Ur + 6 G52 Hy K5 Uy Uz —
2G3H;J32 Uy Up 4+ 6 Gs Hy® Upy Ur 4+ G52 Hy J3 Uy Ur + 6 G Hy K52 Uy Up—
2H; J32 K3 Uy Uz + 6 H3® Ky Uy Uy — 2G5 Hy K32 Ug? — 2 Hy® Ky Ug?+

2GsHy J3 K3 Us Ug + Hs® J5 Us Ug 4+ Gs Js Ks? Uy Ug + 2 H? J3 K3 Uy Ug+

6 Gs Hy?> Ky Us Ug — H32 J32 Uy Ug + 2H3* Uz Ug + 6 G3 Hy K32 Uy Ug—

2H;3 J3? K3 Uy Ug + 6 H3® K3 Uy Ug + 2 G3® K3 Uy Ug — G J52 Uy Ug+

6 Gs? Hs? U3 Ug + 6 G52 Hy K3 Uy Ug — 2G3 Hy J5? Uy Ug + 6 G3 Hs® Uy Ug+

6 G3 Hy® K3 Uyy Ug — H3? J3% Uy Ug + 2Hz* Uyy U + G3? J3 K3 Up Ug+
2G3Hy% J3 U Ug + 2G5 K3 Uy Ug — J52 K32 Uy Ug + 6 Hy? K32 Uy Ug—
G3H3?Us? — 6G3H32 Ky Uy Uy — 2H35* U, Uy + Hy® J3 Uy Us—

3G3”H3 J3 U1p Uy — 3G3® J3 K3 Uy Us + G3 J3° Uyq Uy — 6 G3 Hy® J3 Uyy Us+
2G5 Hs2 Uy Uy + 3H32 J3 K3 Uy Us — 3G5 Hy K32 Uy% — 3H32 Ky U2+

Hy? J3 Us Uy + 3H3? J3 Ky Uy Uy — 3G4? Hy J3 Uy Uy — 3Gs? J3 Kg Uyy Uyt
Gs J33 U Uy —6Gs Ha2 Ja U Uy —6GsHy Js K3 Uy Uy + Hs J33 Uy Uy—
3H;* J3 Uiy Uy + 4 G3° Hy K3 Uyg Uy — G3 Hy J3° Upg Uy + 4 G Hy® Uy Ug+
3H3J3K32 Uy Uy — 2H3* Uy Ug — 2G3% Hy? Uyy Us — 4 G4® Hy Ky Uy Us+
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4Gy H;J32 Uy Ug — 4G5 H3? Uy Uy — 8H3? K3 Uy Uy — 4 Hy® Ky Uy?—

2G5 Hy? Ups Uy — 4 G3? Hy Ky Uy Uy + 4 Gy H3 J32 Upp Uy — 4G Ha® Uy Up—
2 G32 K32 U11 U2 + 4 G3 J32 K3 Ull U2 - 8 G3 H32 K3 Ull U2 - J34 Ull U2+
4H3*J32 Uy Uy — 2H5* Uy Uy — 3G3 Hs? J3 Uy Uy — 12 H3? K32 Uy Up—

2 G34 U12 U13 - 8 G33 H3 Ull U13 —4 G32 H3 K3 Ul U13 + 4 G3 H3 J32 Ul U13_
4G3H3° Uy Uz — 4 G3* Hy Upp® — 12 G3? Hy? Uy Upg + G3® J3 Uy Upp—

2 G32 K32 Ul U12 + 4 G3 J32 K3 Ul U12 - 8 G3 H32 K3 Ul U12 - J34 Ul U12+

4 H32 J32 Ul U12 -2 H34 Ul U12 —4 GB HB3 Ull2 + 3 G’B2 H3 J3 UlO Ull_
4G3H3K3° Uy Uy +4H3J3° K3 Uy Uy — 4H3° K3 Uy Uy — G Hy Uy®—

6 G3 H3 J3 K3 Ul UlO + H3 J33 Ul UlO - 3 H33 J3 Ul UIO - 4H3 K33 Ul2

Z5 = —3G3H3? K3 Ug? — Hy' Ug? + G52 J3 K3 Ug Ug + 2 G3 Hs? J3 Ug Ug+
2G3HyJ3 K3 Ur Ug + Hs® J5 Uz Ug 4+ Hy? J3 K3 Ug Ug + 2 G52 K32 Us Ug—
G3J3* K3 Us Ug + 8 G3 Hy? K3 Us Ug — H3® J3° Us Ug + 2 Hy* Us Ug+
4G3H3 K52 Uy Ug — Hy J32 K3 Uy Ug + 4Hy* K3 Uy Ug — 6 G Hy J3 K3 Ug Ug+
H3J33Us Uy —3H3% J3 Us Uy — 3Gy J3 K32 Uy Ug + J53 K3 Uy Ug—

6 Hy? Js K3 Uy Ug + 3 G3? Hy J3 U3 Ug 4 3 Gs Hy? J5 Uy Ug + Hy® J5 Uy Ug—
6 Gs?Hy Ky Ujg Ug — 6 G3 Hs® Uy Ug — 3Hg J3 K3? Uy Ug — Gg? Hy? Ug®—
4G4 Hs K3 Uy Ug — 4G5 H33 Uy Ug — 2G52 K32 Ug Ug — 8 Gy Hy2 K Ug Ug—
2H3* Ug Ug + G H3? J3 Uy Ug + 2 Gy Hy J3 K3 Uy Ug + Hy® J5 Uy Ug+
2G3Hs? Uy Ug + 6 Gy Hy? K3 Uy Ug — Hy? J3% Uy Us + 2 Hg? U, Ug+

2G3° H3 Up3 Ug + 2 G3* K3 Upp Ug — G3? J32 Uy Ug + 6 G3® Hy? Upp Ug+

6 G3? Hy K5 Uyy Ug — 2G3 Hg J3% Uy Ug + 6 Gy Hg® Uy Ug + G3? Hg J5 U Ug+
6 Gs Hy K52 Uy Ug — 2H3 J3? K3 Uy Ug + 6 H3* K3 Uy Ug — G52 K32 Uz2—
4G3H2 K3 U2 —Hy' U2 — 4G3Hy K32 Ug Uy — 4 Hy® Ky Ug Upt-

2G3HyJ3 Ky Us Uy + Hs® J5 Us Uy 4+ Gy Js Ks? Uy Uy 4+ 2 Hs? J3 K3 Uy Uz

6 Gy Hy? Ky Us Uy — H32 J32 Us Ur + 2H3* Us Uz + 6 Gy Hy K32 Uy Ur—
2H3J52 K3 Uy Uy + 6 Hs® K3 Uy Uy 4+ 2 G3* K3 Uyg Uy — G2 J5? Uys U+
6G32H32 U3 Ur + 6 G52 Hs K3 Upo Uy — 2G5 Hy J52 Uy Uy + 6 G5 Hy® Upy U+
6 G3 H3” K3 Uyy Uy — H3® J3° Uy Uy + 2Hs* Uy Uz + G3® J3 K3 Uy Urt
2G3Hs? J3 Uyg Ur + 2G5 K3? Uy Uy — J52 K32 Uy Uz + 6 Hy? Ks? Uy Ur—

H32 K32 Ug? + G5 J3 K32 Us Ug 4+ 2 H3? J3 K3 Us Ug + Hy J3 K32 Uy Ug+
6G3H3 K32 U3 Ug — 2H3 J32 K3 U Ug 4+ 6 Hy? K3y U Ug 4+ 2 G3 K32 Uy Ug—
J52 K32 Uy Ug + 6 H3? K52 Uy Ug 4+ 6 G52 Hy K3 Upg Ug — 2 G3 Hy J52 Ups Ug+
6 G H3® U3 Ug + 6 G3 Hy? K3 Uyp Ug — H3? J3% Uya Ug + 2 Hy* Uyp Ug+
2H;] K3 Uy Ug 4+ 2G5 Hy J3 K3 Uy Ug + Hy® J3 Uy Ug 4+ 2 H3 K32 Uy Ug—
3G3H32K3Us2 —H3* U2 —6G3H3 K32 Uy Us — 6 H33 Ky Uy Us+
H33J3UsUs +3H32 J3 K3 Ug Us — 3G32H3y J3 U3 Us — 3G52 J3 Ky Upy Us+
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G3J3° Uiy Us — 6 Gy Hy? J3 Upp Uy — 6 Gy Hy J3 K3 Uy Us + Hy J3* Uy Us—
3H;? J3 Uy Us + 4 G52 Hy K3 Uyg Us — G Hy J32 Upo Us + 4 Gy Hy® Uy Us+
3H3J3 K32 U Us — G K32 U2 —3H32 K32 U2 4+ 3H32 I3 Ky U Ug+

3H3 J3 K3 Uy Uy — 3G3° J3 Ky Uz Uy + G3 J3° Upy Uy — 6 G H3? J3 Uy Uy —

6 Gy Hs J3 K3 Upa Uy + Hy J3° Upp Uy — 3H3° J3 Uy Uy — 3H3% J3 K3 Uyy Uyt
2G3° K32 Ujg Uy — G3J3° K3 Uy Uy + 8 Gy Hy® K3 Upg Uy — H3? J32 Upg Uyt
2H3 Uy Uy + J3 K3 Uy Uy — Hz* Us® — 8 H3° K3 Uy Uz—

2G3*H3? Uy3 Uy — 4 G3* Hy K3 Uy Us + 4 G Hy J3° Upa U — 4 Gy Hy® Uy Us—
2G3°K3° Uy Uy +4G3 J32 K3 Upy Uy — 8 G3 Hy? K3 Uyq U — J3* Uyq U+
4H;3° J3° Uy Uy — 2H3" Uy Uy — 3G3 H3? J3 Uy U — 12 H3* K3° Uy Uz —

6 H3° K3* Uy® — 4 G3” Hy K3 Up3 Uy + 4 Gy Hy J3° Up3 Uy — 4 Gy Hy® Uy Up—
2G5 Ks? Upo Us + 4 G3 J3° K3 Upp Uy — 8 Gy H3” K3 Upo Uy — J3* Upp Us+
4H;3*J3* Uis Uy — 2H3" Upp Uy — 4 Gy H3 K3 Uy Up + 4 Hy J3° K3 Upy Us—
4H;3* K3 Uy Uy — 6 Gy H3 J3 K3 Uyg Us + Hy J3° Uy Uy — 3H3" J3 Uy Up—
8H;K3° Uy Uy — G3* Uy3® — 8 G3° Hy Uypp Uys — 12 G3* Hy? Uyy Ups+
G3®J3U1o Uiz — 2G3° K3° Uy Ugs + 4 G3 J3° K3 Uy Ugs — 8 Ga Hy? K3 Uy Upg—
J3' Uy Ups + 4H3* J3° Uy Ups — 2H3" Uy Ups — 6 G3* Hy® Upp®—

8 G3H3? Uyy Ui +3Gs* Hy J3 Ugg Uras — 4 G3 Hy K3* Uy Ups + 4 H3 J3° K3 Uy Upo—
4H3* K3 Uy Uy — Hy" Uyy® + 3Gy H3® J3 Uy Uy — 2H3* K3* Uy Uy —

G3° K3 Uyp® — 3Gs® Hy? Uyg® — 3G3 J3 K3* Uy Uyg + J3° K3 Uy Upg—

6 Hs* J3 K3 Uy Uy — K3* Uy ?

g = —H3? K3 Ug? + 2G4 Hy J3 K3 Ug Ug 4+ H3® J5 Ug Ug + Hy? J3 K3 Uz Ug+
4G3H; K52 Us Ug — Hy J32 K3 Uy Ug + 4 Hy® K3 Us Ug + 2 H3? K32 Uy Ug—
3G3J3Ks? UgUg + J5* K3 Us Uy — 6 H3? J3 K3 Us Ug — 3Hg J3 K32 Uy Ug+
3G3H? J3 Uz Ug + Hz? J3 Upg Ug — 6 Gy H3? K3 Uy Ug — 2 Hy* Uyg Ug—
2G5 Hy K3 Ug? — 2G5 H33 Ug? — 2G52 K32 Uy Ug — 8 Gy H32 Ky Uy Ug—
2H;* Uy Ug — 4 G5 H3 K32 Ug Ug — 4 Hy® K3 Ug Ug + 2 G3 Hy J3 K3 Us Ug+
Hj? J3 Us Ug + G5 J3 K32 Uy Ug 4+ 2H3? J3 K3 Uy Ug + 6 Gy Hy? Ky Uy Ug—
Hj? J43? Uy Ug 4+ 2H3* Uy Ug + 6 Gy Hy K32 Uy Ug — 2H3 J3% K3 Uy Ug+
6 Hy® K3 Uy Ug + 2G3* K3 Uys Ug — G3® J3% Uyg Ug + 6 G? Hy? U3 Ug+
6 G3>H3 K3 Uy Ug — 2GgHg J3% Uyy Ug 4 6 Gs Hy® Uy U + 6 G3 H3? Ky Uyy Ug—

H;? J52 Uyy Us + 2H3* Uy Us + G52 J5 K3 Uy Ug + 2 Gy Hy? J3 Upg Ug+

2G5 K32 Uy Ug — J52 K32 Uy Ug + 6 Hy? K32 Uy Ug — 2 Gy Hy K32 U2 —

2H33 K3 Uz — 2H32 K32 Ug Uy 4 G3 J3 K32 Uy Uy 4+ 2H3? J3 Ky Uy Ur

Hy J3 K32 Uy Up +6G3Hy K32 Us Uy — 2H3 J32 K3 U Uy 4+ 6 Hy? Ky U Ur+
2G5 K32 Uy Uy — J52 K32 Uy Up + 6 H3? K32 Uy Uz + 6 G52 Hy Ky Uy Up—
2GsHgJ32 Uys Uy 4+ 6 Gy Hy® Uy U + 6 Gy Hy?> Ky Uy Uy — Hy? J5? Uy Urt-
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2H3" Uy Uy + 2 H3* K3 Uy Uz + 2 Ga Hy J3 K3 Uy Uz + H3? J3 Ug Upt-
2H3 K3® Uy Uy + H3 J3 K3° Us Ug + 2 G3 K3® Uz Ug — J32 K3? Uz Ug+

6 H3* K3% U Ug + 2 H3 K3® Uy Ug + 6 G3 Hy® K3 Uy Ug — Hy? J3 Uy Ug+
2H;" U3 Ug + 2 H3% K3 Uyp Ug + H3? J3 K3 Uy Ug — 3 Gs Hy K3° Us*—

3H3° K3 Us® —2G3K3® Uy Us — 6 H3? K32 Uy Us + 3 Hy? J3 K3 Uz Us+

3H3 J3K3° Uy Us — 3G3° J3 K3 Upz Us + G3 J3° Ujs Us — 6 Gy Hs? J3 Uy Us—

6 G3Hs J3 K3 Ui Us + H3 J3° Uyo Us — 3H3° J3 Upp Uy — 3H3” J3 K3 Uyq Us+
2G3*Ks* Ugg Us — G3 J3* K3 Uyg Us + 8 Gs Hy” K5 Uyg Uy — Hs® J3° Uy Us+
2H3" Uyg Us + J3 K3 Uy Us — Hy Ky Ug® + 3Hy J3 K3 Uy Uy +

J3K3® Uy Uy — 6 G3 Hy J3 K3 Ugs Uy + H3 J5° U3 Uy — 3H3% J3 Uy Ug—

3H3% J3 K3 U Uy +4G3 H3 K3? Uy Uy — Hy J32 K3 Uy Uy + 4 Hz? K3 Uy Ug—
4H3? K3 Us® — 12H3° K32 Uy Uy — 4 G3° Hy3 K3 U3 Uz + 4 G H3 J3° Upy Us—
4G3H3° U3 Us — 2G5 K3? Upp Us + 4G J3? K3 Up Us — 8 Gy Hy? Ky Uy Us—
J3' Uia Us + 4H;% J3% Ugp Uy — 2 H3* Uy, Uy — 4 Gy Hy K3® Uyq U+

4H3J3* K3 Uyy Us — 4Hs? K3 Uy Us — 6 G Hy J3 K3 Uy Us + Hy J3° Uy Us—
3H3° J3Ujo Uz — 8H3 K3° Uy Uz — 4 Hy K3® Uy® — 2 G3° K3 Uy Ug+

4G3J3° K3 Ur3 Uy — 8 G3 H3* K3 Uys Uy — J3* U3 Up + 4 Hy? J5% Uy Up—

2H;* U3 Uy —4G3 H3 K3* Ui Uy 4+ 4 Hy J3° K3 Ugo Uy — 4 H3? K3 Upp Up—

2H;3* K3* Uy Uy — 3G J3 K3° Ugg Us + J3° K3 Ugg Uy — 6 Hs® J3 K5 Uy Up—
2K5* Uy Uy — 4G3° Hy Ups® — 12 G3* Hy? Up Ugs — 8 Ga H3® Uy Ups+
3G3*H3J3UygUss —4G3H3 K3? Uy Uys + 4 H3 J3? K3 Uy Uy — 4 Hy? K3 Uy U —
4G3Hs® Upp® — 2H3" Uy Upa + 3 G35 H3? J3 Upg Ups — 2 H3” K5? Uy Upa+

Hs® J3 U1p Uy — 3Gs” Hy K3 Ugp® — 3Gy Hs® Ugg® — 3H3 J3 K% Uy Uyg

7 = H3? J5 K3 Ug Ug 4+ 2 H32 K3? Us Ug — 3H3 J3 K32 U Ug + H3® J3 Uy Ug—
2H;] K3 Uy Ug — G52 K32 Ug? — 4G5 Hy? K3 Ug? — Hy* Ug?—
4G3H; K32 U; Ug — 4H33 K3 Uy Ug — 2H32 K32 Ug Ug + Gy J3 K32 Us Ug+
2H3%J3 K3 Us Ug + Hy Js K32 Uy Ug + 6 G Hy K52 Ug Ug — 2 Hy J5? K3 Ug U+
6 Hy® K3 U3 Ug + 2G5 K3 Uy Ug — J3? K3? Uy Ug + 6 Hy? K32 Uy Ug+
6 G3>Hy K3 U3 Ug — 2 Gy Hg J3? Uys Ug 4 6 Gs Hy® Uy U + 6 G3 Hy? Ky Uyp Ug—
H3? J3° Uy Ug + 2 H3" Uy Ug + 2 H3? K3 Uyy Ug + 2 Gy Hs J3 K3 Uy Ug+
H3% J3 Uy Us + 2 H3 K3° Uy Ug — H3? K3° Uy? + Hy J3 Ky Us Ur+
2G5 K33 Us Uy — J52 K32 Us Uy + 6 H3? K32 Us Uy + 2 H3 K3 Uy Ur
6 Gs Hy® K3 Ups Uy — H3? J32 U Uy + 2H3* Uy Up + 2 Hy? K3 Upy Upt

H32J3 K3 U Us + 2H3 K32 Us Ug + 2H3? K3 Uy Ug — G K32 Us?—
3H;? K32 Us? —2H3 K32 Uy Us + 3H3 J3 K32 U Us + J3 K32 Uy Us—
6 G3 Hz J3 K3 Uy Us + Hy J3° Uy Us — 3 Hz® J3 Uz Us — 3Hs? J3 K3 Upp Us+
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4G3H3 K3* Ujg Us — Hy J3° K3 Uy Us + 4 H3® K3 Upg Us + J3 K3° Uy Uy—
3H3% J3 K3 Upz Uy + 2H3° K32 Uy Uy — 6 H3® K3 Us® — 8 H3 K3° Uy Uz —
2G3?K3° U3 Uz +4G3 J32 K3 Uy Uy — 8 Ga H3? K3 Uy Us — J3* Uy Us+
4H;3* J3* U3 Uz — 2H3" Uy3 Uy — 4 Gy H3 K3* Uya Us + 4 Hy J3° K3 Upp Uz —
4H5’ K3 Uy Us — 2H3° K3 Uyy Uz — 3G J3 Ks® Uyg Uz + J3° K3 Uy Us—

6 Hs? J3 K3 Upg Uz — 2K3' Uy Uy — K3* Uy® — 4 Gy Hy K3 Uy Ug+

4H;3 J3° K3 Ui Uy — 4H3” K3 Uy3 Uy — 2 H3” K3° Uy Uy — 3H; J3 K3° Uy Ua—
6 G5 H3* Ups® — 8 G3 H3* Upo Ups — 2H3* Uy Uss + 3 Gy Hy? J3 Upg Uz —
2H,% K3® Uy Ups — Hy* Upo® + H3? J3 Uy Upp — 3Gy Hy? K3 Uyp®—

H;*' Uyp°

Zs = —2G3 H3 K3 Ug® — 2 H3° K3 Ug® — 2H3° K3 Uy Ug + Hy J3 K3% Us U+
2 Gy K3® Uz Ug — J32 K3? Uz Ug + 6 Hy? K3° Uz Ug + 2 H3 K3° Uy Ug+
6 G Hy® K3 Uz Ug — H3? J3% Upz Ug + 2 Hz* Uy Ug + 2 Hy? K3 Uy Ug+
H3° J3 K3 Uyg Us + 2H3 K3 U3 Uy + 2H3° K3 U3 Uy — Hy K% U+
J3K3* Uz Us — 3H3? J3 K3 Uys Us + 2 H3? K3? Uy Us — 4 Hy K3 U®—
2K3' Uy Uy — 4 Gy Hy K3? Uy Uz + 4 Hy J3> K3 Up3 U — 4 Hy? K3 Uy Us—
2H3% K3? Uy Us — 3H3 J3 K3° Uyg Us — 2H3? K3° Uy Uy — 4 Gy Hy® Uy°—
2H;" Usp Uyz + Hy® J3 Uyg Upy — H3? K3 Uy

Eg = —H3? K32 Ug? + 2H3 K32 U3 Ug 4+ 2H33 K3 U3 Ug — K3t U32—
2 ng K32 U13 U3 - H34 U132 = 0

REFERENCES

1. Stewart, D., 1965, “A Platform with Six Degrees of Freedom,” Proc. Institute of Me-
chanical Engr., London, England, Vol. 180, pp. 371-386.

2. Waldron, K.J., and Hunt, K.H., 1987, “Series-Parallel Dualities in Actively Coordinated
Mechanisms,” Proc. 4th Int. Symp. Robotic Research, MIT Press, Cambridge, MA, pp. 175-
181.

3. Griffis, M., and Dulffy, J., 1989, “A Forward Displacement Analysis of a Class of Stewart
Platforms,” J. Robotic Systems, Vol. 6, pp. 703-720.

4. Nanua, P., Waldron, K.J., and Murthy, V., 1990, “Direct Kinematic Solution of a
Stewart Platform,” IEEE Trans. Robotics and Automation, Vol. 6, pp. 438-444.

5. Lin, W., Dufty, J., and Griffis, M., 1990, “Forward Displacement Analyses of the 4-4
Stewart Platforms,” Proc. 21st Biennial Mechanisms Conference, ASME, New York, DE-Vol.
25, pp- 263-269.

6. Parenti-Castelli, V., and Innocenti, C., 1990, “Forward Displacement Analysis of Par-
allel Mechanisms: Closed Form Solution of PRR-3S and PPR-3S Structures,” Proc. 21st
Biennial Mechanisms Conference, ASME, New York, DE-Vol. 25, pp. 111-116.

18



7. Raghavan, M., 1991, “The Stewart Platform of General Geometry Has 40 Configu-
rations,” Advances in Design Automation—Vol. 2, ASME, New York, DE-Vol. 32-2, pp.
397-402.

8. Tahmasebi, F., and Tsai, L.W., 1994, “Closed-Form Direct Kinematics Solution of a
New Parallel Minimanipulator,” Trans. ASME, J. Mechanical Design, Vol. 116, pp. 1141-
1147.

9. Tahmasebi, F., and Tsai, L.W., 1995, “On the Stiffness of a Novel Six Degree-of-Freedom
Parallel Minimanipulator,” J. Robotic Systems, Vol. 12, pp. 845-856.

10. Merlet, J-P, 1997, “Miniature in-parallel positionning system MIPS for minimally
invasive surgery,” Proc. World Congress on Medical Physics and Biomedical Engineering,
pp. 14-19.

11. Ben-Horin, R., and Shoham, M., 1996, “Construction of a New Type of a Six-Degrees-
of-Freedom Parallel Manipulator with Three Planarly Actuated Links,” Proc. ASME Design
Conference, pp. 96-DETC/MECH-1561.

12. Hudgens, J.C., and Tesar, D., 1988, “A Fully-Parallel Six Degree-of-Freedom Mi-
cromanipulator: Kinematic Analysis and Dynamic Model,” Trends and Developments in
Mechanisms, Machines, and Robotics, Proc. 20th Biennial Mechanisms Conference, ASME,
New York, DE-Vol. 15-3, pp. 29-37.

13. Gosselin, C., and Angeles, J., 1988, “The Optimum Kinematic Design of a Planar
Three-Degree-of-Freedom Parallel Manipulator,” Trans. ASME, J. Mech., Transmis., and
Auto. in Design, Vol. 110, pp. 35-41.

14. Gosselin, C., and Angeles, J., 1989, “The Optimum Kinematic Design of a Spherical
Three-Degree-of-Freedom Parallel Manipulator,” Trans. ASME, J. of Mech., Transmis., and
Auto. in Design, Vol. 111, pp. 202-207.

15. Tsai, L.W., 1996, “Kinematics of a Three-DOF Platform Manipulator with Three
Extensible Limbs,” Recent Advances in Robot Kinematics, edited by J. Lenarcic and V.
Parenti-Castelli, Kluwer Academic Publishers, London, pp. 401-410.

16. Song, S.M., Zhang, M.D., 1995, “A Study of Reactional Force Compensation Based
on Three-Degree-of Freedom Parallel Platforms,” J. Robotic Systems, Vol. 12, pp. 783-794.

17. Ceccarelli, M., 1997, “A New 3 dof Spatial Parallel Mechanism,” Mechanism and
Machine Theory, Vol. 32, No. 8, pp. 895-902.

18. Tsai, L.W., 1999, Robot Analysis, Wiley-Interscience, New York, pp. 32-39.

19. Salmon, G., 1964, Lessons Introductory to the Modern Higher Algebra (Fifth Edition),
Chelsea, New York, pp. 76-83.

20. Macsyma, 1995, Reference Manual, 15th edition, Macsyma, Inc., Arlington, MA.

21. Roth, B., 1993, “Computation in Kinematics,” Computational Kinematics, edited by J.
Angeles, G. Hommel, and P. Kovacs, Kluwer Academic Publ., Dordrecht, The Netherlands,
pp- 3-14.

19



Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate
for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
01-10-2004 Technical Memorandum
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Direct and Inverse Kinematics of a Novel Tip-Tilt-Piston

Parallel Manipulator 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Farhad Tahmasebi

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Goddard Space Flight Center 2005-00020-0

Greenbelt, MD 20771

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITOR'S ACRONYM(S)

National Aeronautics and Space Administration

Washington, DC 20546-0001 11. SPONSORING/MONITORING
REPORT NUMBER

TM-2004-212763

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited, Subject Category: 37
Report available from the NASA Center for Aerospace Information,7121 Standard Drive, Hanover, MD 21076. (301)621

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Closed-form direct and inverse kinematics of a new three degree-of-freedom (DOF) parallel manipulator with inextensibl
and base-mounted actuators are presented. The manipulator has higher resolution and precision than the existing three
mechanisms with extensible limbs. Since all of the manipulator actuators are base-mounted; higher payload capacity, sr
actuator sizes, and lower power dissipation can be obtained. The manipulator is suitable for alignment applications wher
tilt, and piston motions are significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree
polynomial in the square of tangent of half-angle between one of the limbs and the base plane. Hence, there are at most
assembly configurations for the manipulator. In addition, it is shown that the 16 solutions are eight pairs of reflected
configurations with respect to the base plane. Numerical examples for the direct and inverse kinematics of the manipulat
presented.

15. SUBJECT TERMS
degree-of-freedom (DOF), inverse kinematics, direct kinematics

16, SECURITY CLASSIFIGATION OF- 17, klllawsq,glgp oF |18, NUNBER [9b. NAWE OF RESPONSIBLE PERSON
2. REPORT |b. ABSTRACT | c. THIS PAGE paces | Farhad Tahmasebi

19b. TELEPHONE NUMBER (Include area code)
19 (301) 286-5203

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239-18






	REPORT DATE (DD-MM-YYYY): 01-10-2004
	REPORT TYPE: Technical Memorandum
	DATES COVERED (From - To):    
	TITLE AND SUBTITLE: Direct and Inverse Kinematics of a Novel Tip-Tilt-Piston
Parallel Manipulator
	5a: 
	 CONTRACT NUMBER: 

	5b: 
	 GRANT NUMBER: 

	5c: 
	 PROGRAM ELEMENT NUMBER: 

	5d: 
	 PROJECT NUMBER: 

	5e: 
	 TASK NUMBER: 

	5f: 
	 WORK UNIT NUMBER: 

	AUTHOR: Farhad Tahmasebi
	PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES): 
Goddard Space Flight Center
Greenbelt, MD  20771
	PERFORMING ORGANIZATION:   2005-00020-0
	SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES): 
National Aeronautics and Space Administration
Washington, DC  20546-0001
	SPONSORING/MONITOR'S ACRONYM:  
	SPONSORING/MONITORING: TM-2004-212763
	DISTRIBUTION/AVAILABILITY STATEMENT: Unclassified-Unlimited,  Subject Category:  37
Report available from the NASA Center for Aerospace Information,7121 Standard Drive, Hanover, MD  21076. (301)621-0390
	SUPPLEMENTARY NOTES: 
	ABSTRACT: Closed-form direct and inverse kinematics of a new three degree-of-freedom (DOF) parallel manipulator with inextensible limbs and base-mounted actuators are presented. The manipulator has higher resolution and precision than the existing three DOF mechanisms with extensible limbs. Since all of the manipulator actuators are base-mounted; higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. The manipulator is suitable for alignment applications where only tip, tilt, and piston motions are significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree
polynomial in the square of tangent of half-angle between one of the limbs and the base plane. Hence, there are at most 16 assembly configurations for the manipulator. In addition, it is shown that the 16 solutions are eight pairs of reflected configurations with respect to the base plane. Numerical examples for the direct and inverse kinematics of the manipulator are also presented.
	SUBJECT TERMS: degree-of-freedom (DOF), inverse kinematics, direct kinematics
	SECURITY CLASSIFICATION OF REPORT: 
	SECURITY CLASSIFICATION OF: ABSTRACT: 
	SECURITY CLASSIFICATION OF: THIS PAGE: 
	LIMITATION OF ABSTRACT: 
	NUMBER OF PAGES: 19
	NAME OF RESPONSIBLE PERSON: Farhad Tahmasebi
	TELEPHONE NUMBER (Include area code): 301-286-5203


